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ABSTRACT

Personal robots that help disabled or elderly people in their activities of daily living need to be able

to autonomously perform complex manipulation tasks. Traditional approaches to this problem

employ task-specific controllers. However, these must to be designed by expert programmers, are

focused on a single task, and will perform the task as programmed, not according to the preferences

of the user. In this dissertation, we investigate methods that enable an assistive robot to learn

to execute tasks as demonstrated by the user. First, we describe a learning from demonstration

(LfD) method that learns assistive tasks that need to be adapted to the position and orientation

of the user’s head. Then we discuss a recurrent neural network controller that learns to generate

movement trajectories for the end-effector of the robot arm to accomplish a task. The input to

this controller is the pose of related objects and the current pose of the end-effector itself. Next,

we discuss how to extract user preferences from the demonstration using reinforcement learning.

Finally, we extend this controller to one that learns to observe images of the environment and

generate joint movements for the robot to accomplish a desired task. We discuss several techniques

that improve the performance of the controller and reduce the number of required demonstrations.

One of this is multi-task learning: learning multiple tasks simultaneously with the same neural

network. Another technique is to make the controller output one joint at a time-step, therefore to

condition the prediction of each joint on the previous joints. We evaluate these controllers on a set

of manipulation tasks and show that they can learn complex tasks, overcome failure, and attempt a

task several times until they succeed.
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CHAPTER 1: INTRODUCTION

Every day people do different Activities of Daily Living (ADLs) such as self-feeding, dressing,

grooming, and personal hygiene. However, many disabled people and elderly are not able to per-

form ADLs independently. Assistive robotics, whether in the form of wheelchair mounted robotic

arms or mobile robots with manipulators, promises to improve the independence and quality of

life of the disabled and the elderly. Particularly, autonomous robots can be of great help to users

by performing the ADLs for them. While most current systems rely on remote control, there are

ongoing research efforts to make assistive robots more autonomous. This includes the identifica-

tion of the objects, grasping and manipulation executed on behalf and in collaboration with the

disabled user [20, 48, 9].

One approach to make robots autonomous is to hand-engineer a controller that is specific to a

certain task. However, this approach requires a lot of time from the robot programmer for designing

each controller. In addition, the designed controller cannot adapt itself based on the preferences

of each user. On the other hand, Learning from Demonstration (LfD) is a technique in which

users can demonstrate different tasks to the robot without having any knowledge about how to

program robots. In this case, the learned controller is indeed based on the preferences of the user.

Although LfD does not require large number of interactions with the environment for learning

as in Reinforcement Learning (RL), it still needs relatively large number of demonstrations from

humans.

In this dissertation, we discuss different approaches to learn from user demonstrations with as few

demonstrations as possible. First we show that it is possible to learn from a very few number of

demonstrations if we consider a class of tasks such as the ones performed with respect to a person’s

head. Second, we show that if we have perfect knowledge about the environment and sufficient
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number of demonstrations, without making simplifying assumptions about the structure of the task,

we can generate robot arm trajectories that enable the robot to perform the task. For this purpose,

we design a simulation environment to train and test the robot on human demonstrations. Then

we show that the trained policy can be used in a real-world scenario where the pose of each object

is known similar to the simulated environment. For learning to generate trajectory movements,

we use recurrent neural networks (RNNs). These networks can remember the past events and

predict the future based on those events. We show that RNNs can generate very smooth trajectories

based on the current position and orientation of relevant objects. In addition, we show how to use

reinforcement learning to extract the desired preferences of the user from a set of demonstrations

with mixed preferences.

In the third part of this thesis, we extend the previous method by using images as the input to

the neural network and also using multiple tricks to make the system more sample-efficient. The

proposed approach combines the data from multiple tasks to learn a single recurrent neural network

policy. The policy takes as input images of the environment and a task selector one-hot vector, and

predicts the joints of the robot in the next time-step. For processing the visual input, we use

convolutional layers that are shared with the encoder part of an autoencoder which reconstructs the

input images.

Since we do not make any assumption about the input images and the type of task that the robot

needs to learn, the approach needs relatively large number of training samples which is not cur-

rently easy to obtain in the robotics domains. To make the approach more sample efficient, we use

a single neural network and train it with all the data that we have from some related tasks. This

way, the patterns in one task can be captured and used in other tasks. In addition, we predict only

one joint at each time-step. As a result, the output neurons are shared among different joints. These

aggressive parameter sharing mechanisms reduce the total number of parameters in the network,

reduce overfitting, and have a regularizing effect.

2
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One of the challenges in LfD is that humans might occasionally make mistakes during the demon-

strations. These mistakes might seem unwanted in the first glance. However, we argue that they

help to train a more robust model that can overcome its own mistakes since it has seen similar mis-

takes in the training. On the other hand, we do not want the model to repeat the same mistakes very

often. Therefore, we use a trick to diminish the probability of mistakes and generate a trajectory

that is very robust and at the same time overcome the mistakes if they happen.

The remainder of this dissertation is organized as follows. Chapter 2 describes related works. In

Chapter 3 we describe an approach to learn human head dependent tasks from a few demonstra-

tions. In Chapter 4 we explain our method for learning trajectories using recurrent neural networks

given object poses as input. Chapter 5 extends the network architecture to accept images as input

and learn multiple tasks all at once. We conclude and talk about the future work in Section 6. This

thesis includes the research works by the author [56, 55, 57].

3
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CHAPTER 2: RELATED WORK

Two main approaches to learning robot behaviors are Learning from Demonstration (LfD) and

Reinforcement Learning (RL). In LfD, the user demonstrates the tasks to the robot while in RL

the robot tries to find the optimal policy by gathering experience from its interactions with the

environment. In LfD the challenge is to extend these demonstrations to unseen situations [5]. LfD

has achieved many successful applications such as autonomous helicopter maneuvers [1], playing

table tennis [13], object manipulation [51], and making coffee [65]. This success comes at the

expense of user’s time to demonstrate the tasks to the robot. On the other hand, RL approaches

enable the robot to acquire different skills by itself [38, 52].

In some domains, gathering relatively large number of examples is possible in the simulation en-

vironment(e.g. [2, 3]). However, the challenge in many LfD applications is to use a minimum

number of examples to learn a task. The examples may include situations in which the geometry

of the objects change from the demonstration scene to the test scene. In this case, non-rigid regis-

tration can be used to map the camera input points from the training scene onto the test scene [63].

This registration is later used to adapt the trajectory of the robot arm captured during the demon-

stration to the testing situation. It turns out that non-rigid registration works well as long as the

environment does not change too much such that a valid registration could not be found. For ex-

ample, when person’s head rotates 180◦, most of the points of the demonstration are not visible

anymore, hence, finding a warping function fails.

Another method to capture the critical aspects of demonstrated trajectories and maintain them

during the test is investigated in [76]. Their method handles new positions of the involved objects

while avoiding new obstacles in the scene by using motion planning algorithms. A method that

utilizes averaging to generalize the trajectory to the scenes where the object position is changed

4
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is proposed by [60]. Neither method considers the orientation of the objects, thus they cannot be

applied to situations where a non-symmetric object rotates.

Another approach is to model the recorded movements using a set of differential equations in

the dynamic movement primitives framework [51]. In another work this framework is adapted to

generate trajectories that end at goals at different positions while avoiding obstacles. Also, [12]

uses a Hidden Markov Model to capture the constraints of demonstrated trajectory. They use a set

of pre-defined landmarks for each trajectory to track the changes from demonstration to test. More

recently, [30] worked on improving the demonstrated trajectories based on user preferences. We

can also consider force information in LfD. For instance, [61] proposed a LfD framework teaching

force-based manipulation tasks to robots.

Both RL and LfD approaches need relatively large number of examples for training if we do not en-

ter simplifying assumptions to the learning algorithm. To overcome this problem, some researchers

proposed cloud-based and crowd-sourced data collection techniques [34, 22, 16]. Another way to

reduce the number of necessary demonstrations is to hand-engineer task-specific features [11, 12].

Other researchers have tried to reduce the number of required examples by transfer learning or

multi-task learning [69, 39, 58, 46, 77]. An early work considered learning a neural network pol-

icy on multiple related tasks with backpropagation [14]. It is possible to learn this kind of policies

by considering both the state and the task as input to the policy [17]. Neural network policies can

be decomposed to different modules where there are some task-specific modules and some robot-

specific modules [18]. It is also shown that sharing the parameters of a neural network among

different tasks not only improves the results, but also it is even better to train the model using the

data of multiple related tasks instead of using the same amount of data from the original task [53].

Deep neural networks have proven to be very powerful in learning very complex functions. Differ-

ent approaches are proposed to model human neurons [59, 29], however, a very simplified model

5
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of human neuron is shown to be a sufficient building block of these networks. Although these

networks can be fooled by some input images [68], there are ways to avoid this [32, 31]. Deep net-

works are being successfully used to map robot’s visual input to control commands [43, 54, 4, 44,

45]. In Chapter 5, we propose an end-to-end deep neural network architecture that can learn mul-

tiple tasks with low amount of data compared to a single-task network. Our architecture predicts

each joint of the robot at one time-step. By this approach, the weights are shared among different

joints of the robot, therefore learning from small number of examples without easily overfitting

is realized. This neural network architecture with some modifications is also used to predict taxi

demand throughout large city [28, 75].

Our architecture utilizes the power of Recurrent Neural Networks (RNNs), an effective tool to

model and reproduce patterns in sequential data. Some of successful applications of RNNs include

handwriting generation [25], language modeling [33], machine translation [66], speech recogni-

tion [24], visual recognition [19], and image captioning [73]. Although recurrent neural networks

had been proposed as early as the 1980s, early versions suffered from the difficulty of training

over sequential data, due to the difficulty to account for events occurring at different times in the

training data sequences (the “vanishing error gradient” problem). Succeeding versions of RNNs

such as LSTMs [26] feature explicit gating mechanism that helped in storing and retrieving infor-

mation over long time periods. In recent years, similar mechanisms were proposed such as Gated

Recurrent Units (GRU) [15].

6
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CHAPTER 3: TRAJECTORY ADAPTATION

Learning a wide variety of tasks from user demonstrations might be difficult since the learning

algorithm does not know anything about the task and needs to learn everything from scratch. If

we do not target a specific class of tasks, we cannot provide the learning algorithm with some

simplifying assumptions to be able to learn from a few number of demonstrations. Therefore, one

approach to make LfD more sample efficient is to have some class of tasks in mind and try to

generalize from a very small number of examples by putting our intuition and assumptions into the

learning algorithm.

In this chapter we consider a subset of ADL tasks that are dependent on the head pose of the user.

For instance, consider feeding (using forks, spoons, glasses, bringing bottles of juice or medication

to the mouth), personal grooming (combing the hair, shaving, brushing teeth) as well as other ADLs

such as reading a book or participating in a video chat. In these tasks the assistive robot cannot

simply reproduce pre-programmed or rigidly demonstrated trajectories. The trajectory must be

dependent on and adapting to the current head pose of the user. For instance, when feeding the

user, the robot needs to bring the fork to the mouth of the user – other trajectories are ineffective

and potentially dangerous.

Adapting to the current head pose is not a problem if the trajectory had been calculated from scratch

using a formal model of the task. Unfortunately, many ADLs are difficult to describe formally -

they might depend on the environment and the preferences of the user. One of the most desirable

ways to teach a robot to perform an ADL is LfD - a technique in which the task is demonstrated

to the robot either by manually guiding its arm or by teleoperation. One of the advantages of

LfD is that the user can demonstrate the task according to their own preferences. Ideally, from a

small number (possibly, just one) demonstration, the robot should be able to generalize the learned

7
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trajectories to a new environment or state. Due to the increase in the problem complexity, previous

LfD implementations that adapt the demonstrated trajectories to new situations usually do not

generalize to the 3D pose of the objects in the environment.

In this chapter, we propose a method to adapt demonstrated trajectories to situations in which the

pose of the human head has changed. Our method relies on a few example demonstrations of a

task, and using geometrical transformations, adapts the trajectories to situations where the position

and the orientation of the head has changed. Figure 3.1 shows an example of how the arm of a

Rethink Robotics Baxter robot needs to adapt the trajectory of the arm bringing food to the user’s

mouth as the user moves and rotates his head.

Figure 3.1: Trajectory adaptation of the arm of the Baxter robot in a feeding task. As the head pose
changes, the robot arm must traverse trajectories of different shape and length.

8
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Problem definition

In learning from demonstration, we start by performing the task for the robot and recording the

executed trajectory. A task can be executed using different trajectories based on the state of the

environment. For example, a robot performing a head pose dependent ADL task might use either

its right or left arm depending on which one is closer to the head. Therefore, we record trajectories

augmented with the state of the environment at every time step. For the purpose of the work

described in this chapter, the state consists of only the head pose. However, a complete sequence

of RGB-D frames from the camera can be considered as the state if we have enough example

demonstrations.

The trajectory of the robot arm is usually represented in joint space by keeping track of the value

of each joint at each time step. This trajectory can also be shown in task space in which the pose

of the end-effector is stored. We use task space trajectory in order to be able to transform it in 3D

space.

Each trajectory might be achieved by executing a few demonstrations, using dynamic time warp-

ing [62] to synchronize them, and then do averaging on the resulting trajectories.

For each task, we record N demonstrations D = {d1 . . . di . . . dN}. A demonstration di = {E,Q}

consists of Q, the state of environment including head pose H , and E = [e1 . . . et . . . eT ] a set of

end-effector poses et at time t = [1 . . . T ]. Pose et = [X, Y, Z, φ, α, ψ] is the vector containing the

position and orientation (roll, pitch, yaw) of the end-effector with respect to origin. Similarly, we

show the set of head poses during the demonstration by H = [h1 . . . ht . . . hT ] in which ht is the

head pose at time t.

Naturally, the robot is able to retrace a learned trajectory, which would work fine provided that the

evolution of the head poses during test are the same as during the demonstration. The challenge we

9
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are trying to solve is that the head pose during test time is different from the demonstration ones:

H ′ = [h1 . . . ht′ . . . hT ′ ] where ht′ is the head pose at time t′. The goal is to find the corresponding

end-effector trajectory during the test time E ′ = [e1 . . . et′ . . . eT ′ ]. Note that not only the head

poses might be different, but also the total time of the trajectory t′ might be different at test time

than the time t it took at demonstration. For example, consider the scenario shown in Figure 3.2 in

which during the demonstration the arm traverses a straight trajectory towards the head. During the

test, however, the trajectory takes longer to be executed since the head moves simultaneously. This

change in trajectory execution time might occur because we prioritize maintaining the end-effector

pose relative to the head pose rather than progressing in execution of the trajectory.

(a) (b)

Figure 3.2: The duration of executed trajectory at test might be different from the demonstration.
Demonstrated trajectory (a) is a straight trajectory towards the head. The desired trajectory at test
time (b) is longer since the head moves during the execution.

In many tasks, the robot should respond to the movements of the head. For example, consider the

task of holding a book for a person such that the person can easily read it. When the person rotates

his head, the position and the orientation of the book should be changed accordingly. This problem

of capturing the relationship between the head pose and the end-effector pose, can be captured

using the method proposed in [10]. However, this approach needs dozens of demonstrations from
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different orientations and positions. If we want to minimize the number of these demonstrations,

they need to be designed by an expert such that they capture different aspects of this relationship.

Gathering dozens of demonstrations per task is not easy in assistive robotics where the task must

be adapted to the preferences and environment of each user. In the next section, we will explain

a solution to overcome this problem by using as little as a single trajectory to accomplish difficult

tasks.

Method

In this section, we explain the steps to adapt the trajectories from the demonstration to the test

situation. The real-time head pose of the user is collected using a Kinect sensor mounted on the

robot. We use this information to transfer each waypoint of a demonstrated trajectory to make a

new trajectory. The input of this transformation is the 3D pose of the end-effector, so the result

would be a 3D trajectory of the end-effector. Therefore, in order for the robot to be able to execute

the trajectory, we convert the trajectory from task space to joint space using inverse kinematics.

Let us start by defining the notations used in the remaining of this section. Each pose in a 3D

world can be uniquely described by its position and orientation. We define operators p(x) and r(x)

which decompose pose x into a translation vector and a rotation matrix respectively. We also define

p(∆(x, y)) = p(x)− p(y) to be a translation vector from x to y and r(∆(x, y)) = r−1(y)r(x) will

be the difference between two rotation matrices.

11
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Finding changes in the head pose

The head pose is extracted using the random regression forests method proposed by [21]. In

practice, we found the output of this method to be relatively noisy. By taking advantage of the fact

that we are recording a continuous scene at fixed intervals, we applied an Exponentially Moving

Average (EMA), a common noise reduction technique for time-series data:

ht = αh̃t + (1− α)ht−1 (3.1)

where h̃t is the noisy head pose, and ht is the filtered head pose by considering previous head poses

with more emphasis on the most recent ones. The discount factor α controls how much weight we

give to the old data, which is set to 0.2 in our experiments.

Each demonstration consists of multiple trajectories. At each time step, we need to select from

the demonstrated trajectories one that is “closest” to the test situation. For this purpose, we use a

K-Nearest Neighbor (KNN) classifier to decide which head pose in the demonstrated trajectories

is closest to the current head pose at this time step. Based on this prediction, we select a waypoint

of the corresponding trajectory at the current time step to be translated. The distance measure used

in KNN is as follows:

d(ht, ht′) = ‖p(∆(ht, ht′))‖+ β‖r(∆(ht, ht′))‖ (3.2)

where ht′ is the head pose at test time step t′, ht is the head pose at demonstration time step

t, and the parameter β controls how much weight we give to the orientation compared to the

position. Note that the selection of the trajectory occurs at each time step during the execution of

the trajectory. In other words, at each time step, we consider the head pose in each trajectory and

select the closest one, then we go to the next time step. This approach is justified by the requirement

12
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for the system to be able to respond in real-time to head pose changes during the execution of the

trajectory. In most of the previous works (e.g. [42, 63]) this evaluation is preprocessed before the

execution of the trajectory; hence, the system does not react to the changes in the environment. In

next section we explain how to transfer the end-effector pose et to match the new head pose ht′ .

dexe =

{
di
∣∣i = min

ht∈D
|ht − h′t′ |

}
(3.3)

Transferring end-effector poses

The objective in this part is to calculate p(et′) and r(et′) which is position and orientation of robot’s

end-effector at test time t′ based on p(ht), r(ht), p(ht′), r(ht′), p(et) and r(et). The assumption

is that the end-effector should maintain its previous pose with respect to the head. To simplify the

problem, let us divide the changes in the pose of the head to changes in its position and changes in

its orientation. If the head only moves without any change in its orientation, the desired pose for

the end-effector can be achieved by the same head translation:

ptrans(∆(et′ , et)) = p(∆(ht, ht′)) (3.4)

On the other hand, if the head only rotates and does not move as shown in Figure 3.3, the end-

effector’s corresponding action will be a translation to keep the same position with respect to the

head:

We define two operators p(x) and r(x) which decompose pose x into a translation vector and a

rotation matrix respectively. In addition, for any arbitrary poses x and y, we show the difference

between the positions by p(∆(x, y)) = p(x) − p(y) and the difference between two rotations

matrices by r(∆(x, y)) = r−1(y)r(x). We need to to find e′t′ based on et, ht, and h′t′ . When the
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Figure 3.3: Illustration of equation 3.5. The solid vector is p(∆(ht, et)), the dashed vector is
r(∆(ht′ , ht))p(∆(ht, et)) and the dotted vector is prot(∆(et′ , et)).

head rotates, the end-effector should move and rotate to stay in the same orientation with respect

to head. For this purpose, we transform the end-effector to the center of the head, rotate with the

head rotation, and move it back to its previous distance from the head:

prot(∆(et′ , et)) = r(∆(ht′ , ht))p(∆(ht, et))− p(∆(ht, et)) (3.5)

and a rotation to adjust the orientation.

rrot(∆(et′ , et)) = r(∆(ht′ , ht))r(et) (3.6)
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Now we can calculate the overall translation and rotation matrix from et to et′ as

poverall(∆(et′ , et)) = ptrans(∆(et′ , et)) + prot(∆(et′ , et)) (3.7)

roverall(∆(et′ , et)) = rrot(∆(et′ , et)) (3.8)

in which r(∆(h′, h)) is a rotation matrix, p(∆(h, e)) is the vector from the human head to the

arm at any time. When the head moves in any direction, the end-effector should also move in

the same direction. Therefore, we augment prj(e, h) with the effect of head movement by adding

p(∆(h′, h)) to it to achieve the difference between the new position of the end-effector at test

situation and its position at demonstration:

p(∆(e′t′ , et)) = prj(e, h) + p(∆(h′, h)) (3.9)

When the head rotates, the end-effector should also rotate to maintain its previous orientation with

respect to the head. So, the difference between the new rotation of the end-effector and its previous

rotation during the demonstration can be calculated as follows:

The calculations we have performed up to this point are finding the new pose of a single waypoint

in a trajectory. In practice, however, we need to transform the whole trajectory so that it can

perform the same task with respect to the new pose of the head. The first observation we make is

that not all the points in the trajectory are required to be transformed equally: for instance, points

closer to the head require should be translated more compared to the points far away from the head.

To decide how much a point in a trajectory should be transformed, we use the following logistic
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function as a Translation Factor (TF) for each waypoint based on their distance to the head:

TF (d) =
1

1 + ek(d−d̂)
(3.10)

where d = p(∆(et, ht)) is the euclidean distance between the end-effector and the center of the

head, d̂ is the midpoint of transformation, and k is the slope of the transformation. The translation

can vary from 0 when the end-effector is far enough from the head to 1 when the end-effector is

near the head. The parameters d̂ and k can be decided based on the task. Figure 3.4 shows a plot

of function TF (d) with parameters k = 50 and d̂ = 0.3m

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

Distance to head (m)

T
ra

ns
la

tio
n 

fa
ct

or

Figure 3.4: Translation factor shows how much a point in the trajectory should be transformed
which is a function of distance between that point and the head.

Finally, we can achieve the new position and orientation of the end-effector using these formulas:

p(et′) = p(et) + poverall(∆(et′ , et))× TF (d) (3.11)
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r(et′) = r(et) + roverall(∆(et′ , et))× TF (d) (3.12)

Converting end-effector trajectory to joint angles

We represented each trajectory as a set of waypoints containing robot end-effector poses. Then,

we transferred each waypoint from the training to test situation. Note that in both of these cases

we excluded from the state the joints of the robot. However,

In order for the robotic arm to be able to execute the trajectory, a joint configuration should be found

such that the end-effector reaches the desired pose. This can be achieved using inverse kinematics,

which also needs to consider the obstacles in the environment (to prevent, for instance, the robot’s

elbow joint bump into obstacles while performing the transformed movement). Another problem

is that of trajectory smoothness. We assume that the demonstration used a smooth movement

to perform the task. It is possible, however, that the trajectory resulting from the transfer is not

going to be smooth, because, as shown in Figure 3.2, the change in the head pose might insert

new trajectory sequences. If the robot tries to make these corrections too quickly in an attempt to

keep to the original schedule, it can result in a jerky movement. To mitigate this problem, before

transferring the trajectory from task-space to joint-space, we interpolate between the successive

end-effector poses which are far from each other in 3D space. Then, we transfer the trajectory to

the joint space. We also designed a mechanism to control the speed of the arm by interpolating

between successive joint configuration waypoints. This control is implemented at the joint level

just before the command is sent to the robot to make sure that the trajectory is smooth and safe.

Note that the corresponding joint configurations might not be executed smoothly. There might be

two consequent waypoints for the end-effector that close in 3D space, however, the corresponding

joint configurations are far from each other. This causes the joint space trajectory to become jerky
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after transfer. Since the robotic arm is executing the trajectories in close proximity to human head,

it is extremely important to consider safety measures and avoid any dangerous movements by the

arm.

Let us assume that the arm is in configuration J = {j1 . . . ji . . . jM} at time-step t in which ji is

the configuration of ith joint and M is the total number of joints in the arm. The next desired joint

configuration after probably using linear and spherical interpolation on the next desired pose and

then doing inverse kinematics would be J ′ = {j′1 . . . j′i . . . j′M}. We define ∆(J ′, J) as the vector

of difference between each joint configuration.

Experimental validation

We have implemented our technique using the Baxter robot by Rethink Robotics. Baxter has a

zero-force gravity compensation mode in which a user can steer the robot’s arm to desired config-

urations. While the user is moving the arm, we record the joint configurations and also the pose

of the end-effector at a frequency of 20Hz. This series of recorded end-effector poses augmented

with the gripper status forms the trajectory of the arm.

For our experiments we considered three different ADLs:

• Holding a book for the user such that he can read it.

• Facilitating a video chat by recording the face of the user using a camera mounted on the

wrist of the robot.

• Bringing a bottle of water close to the user’s head.

The first two tasks demonstrate how our algorithm can adapt the demonstrated trajectory in real-
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Figure 3.5: Sequence of images demonstrating the task of holding a book for the user to read.
Notice that as the the user turns his head, the robot positions the book for a comfortable reading
position at an appropriate reading distance.

Figure 3.6: Sequence of images demonstrating the execution of the tasks of recording a video of
subject’s face for facilitating a video chat. The top row shows the relative position of the user and
the Baxter robot, while the bottom row shows the video captured. Notice that although the user
had moved around significantly, his face remains centered in the video stream.

time as the head moves. The third task is designed for testing execution of a trajectory and see how

the trajectory adaptation happens as the end-effector comes closer to the head.

The experiments had been performed as follows. A human subject sits in front of the robot in

such a way that the robot arm can reach his head. A Microsoft Kinect sensor mounted on the

Baxter tracks the head pose of the user by capturing RGB-D frames. Based on the relative pose

of the Baxter and the Kinect with respect to each other in the real world, we use a translation

matrix to convert the points from Kinect coordinate system to the Robot’s coordinate system. The
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captured frames are processed in real-time and the extracted head pose is recorded at the same rate

as recording end-effector trajectory waypoints.

In the task of recording video from the person’s face, the camera on the Baxter’s arm is used. In

this task, the head of the person is centered to the camera frame. We expected that by using our

proposed method, the head should remain in center when the person moves or rotates his head.

Results and limitations

The sequence of images in Figure 3.5 shows how the robot performs the tasks of holding a book

for the subject while Figure 3.6 shows the task of facilitating a video chat. In addition, the video

of the robot executing the tasks can be found online1. In the tasks of holding a book and recording

video, our algorithm could successfully adapt the demonstrated trajectory in real-time as the human

subject was moving.

For normal operating conditions we have found that the robot was able to achieve all the three tasks

successfully. We have, however, also identified some limitations of the trained trajectories. In the

following we shall discuss these limitations and whether they can be ameliorated by future work.

Reacting to fast movement. Let us consider that task of recording a video of human face. The

task started when the head was centered in the video frame. Then, the person started to move his

head in arbitrary directions. We found that most of the time, the robot could find a proper pose

for its arm so that the head remains centered in the video frame. However, if the head moved very

fast, there could be a delay of several seconds before the robot arm caught up and re-centered the

head in the camera. This delay could be reduced at the expense of faster movements by the robot

arm. However, since abrupt movements in proximity of human head are dangerous, we preferred

1https://youtu.be/BU775Wdd4JU
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to keep the speed of the arm slow.

Moving outside of the range: For the video recording and book reading tasks, we have found

that in some cases, when the head moved in a wide range, the robot arm stopped moving, because

the desired pose for the end-effector was not reachable by the robot arm. In other words, the

inverse kinematics algorithm could not find the joint configurations to put the end-effector in the

desired pose. As the Baxter robot we used in these experiments is stationary, the range limitations

are unavoidable. For mobile robots, we would need to perform concurrent planning for the base

mobility and arm movement to avoid this problem.

Self-occlusion: One problem sometimes occurring during the execution of the video recording

task was that to place the end-effector to the desired pose, the inverse kinematics finds a joint

configuration that puts the arm between the camera and the head. In this case, view of the face is

occluded by the arm, thus the head pose cannot be figured out. As a result, the algorithm stops

moving the arm until a new information about the current head pose is received. In future work,

we plan to introduce in the motion planning algorithms the ability to predict such occlusions and

try to avoid them when possible.

Tuning the translation factor: In the task of bringing a bottle of water close to the human head,

the translation factor TF plays an important role. If we set the parameter so that it is a large number

even for points far from the head, the rate of unsuccessful trials will increase. On the other hand, if

we tune it so that even the points close to the head are not translated completely, the bottle will not

end up in a proper position close the the subject’s head. Therefore, a trade-off needs to be made to

tune this parameter.

Limitations of the head pose accuracy: Finally, another factor is that the method for extracting

the head pose from the camera input is not reliable enough for some tasks which need the arm to
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be very close to the head. For instance, the current algorithms are too imprecise for tasks such

as feeding the user with a fork. In addition, sometimes the head might be occluded by the arm.

Hence, in order to increase the safety, other mechanisms such as using force sensors must will need

to be incorporated into the method.
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CHAPTER 4: LEARNING FROM SIMULATED DEMONSTRATIONS

In this chapter, we propose an approach where the users demonstrate the tasks to be performed

in a virtual environment that is similar to their living environment and objects. This allows the

collection of a larger number of demonstrations under various scenarios. For each demonstration

we collect the pose of the objects involved as well as the gripper. The collected trajectories are

used to train a neural network, which will serve as the robot controller: at each timestep it receives

as input the current state and predicts the next waypoint in the trajectory and open/closed status

of the gripper. We also discuss a way to extract the preferences of users from the demonstrated

trajectories using reinforcement learning. The general flow is illustrated in Figure 4.1.

Virtual world: training the network Physical world: inference from the network

Demonstration of the task 
by user in the simulation

Robot performs the task in 
real-world based on the trajectory 

generated by the network
Training an LSTM network 

on demonstrations

Dataset of trajectories 
for training

Current state of 
the environment 

and gripper

Multilayer 
LSTM NN

Gripper state 
at next 

time-step

Current state of 
the environment 

and gripper

Gripper state 
at next 

time-step

Inverse 
kinematics

Multilayer 
LSTM NN

Figure 4.1: The general flow of learning from simulated demonstrations approach. The demon-
strations of the ADL manipulation tasks are collected in a virtual environment. The collected tra-
jectories are used to train the neural network controller. The trained controller is then transferred
to the physical robot.
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Method

Collecting demonstrations in a virtual environment

The virtual environment

In the first step users demonstrate the ADLs to the robot in a virtual environment. To enable this

we designed in the Unity3D game engine a virtual environment modeling a table with an attached

shelf that can hold various objects. The virtual environment also contains a simple two-finger

gripper that can be opened and closed to grasp and carry an object. The user can use the mouse

and keyboard to open/close the gripper, as well as to move and rotate it in the 3D Cartesian space.

Alternatively, a joystick can be used for the same tasks. Thus, the gripper has 7 degrees of freedom.

The environment can also contain one or more movable objects, which have their own position and

orientation. Unity3D simulates the basic physics of the real world including gravity, collision

between objects and friction.

Trajectory representation

We represent the state of the virtual environment as the collection of the poses of the M movable

objects q = {o1 . . . oM}. The pose of an object is represented by the vector containing the position

and rotation quaternion with respect to the origin o = [px, py, pz, rx, ry, rz, rw]. During each step

of a demonstration, at time step t we record the state of the environment qt and the pose of the end-

effector augmented with the open/close status of the gripper et. Thus a full demonstration can be

recorded as a list of pairs d = {(q1, e1) . . . (qT , eT )}. The duration of a trajectory T is determined

by the moment when the user successfully finishes or abandons the experiment and it varies from

demonstration to demonstration. The temporal resolution at which the states are recorded depend
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on the requirements of the experiment.

Manipulation tasks considered

The majority of ADLs involve object manipulation, and a very large majority of these involve

objects located on horizontal surfaces such as tables. For our experiments we considered two

manipulation tasks that are regularly found as components of ADLs: pick and place and pushing

to a desired pose.

The pick and place task involves picking up a small box located on top of the table, and placing it

into a shelf above the table. The robot needs to move the gripper from its initial random position

to a point close to the box, open the gripper, position the fingers around the box, close the gripper,

move towards the shelf in an orientation where it will not collide with the shelf, enter the shelf,

and finally open the gripper to release the box.

The pushing to desired pose task involves moving and rotating a box of size 10 × 7 × 7cm to a

desired area only by pushing it on the tabletop. In this task, the robot is not allowed to grasp the

object. The box is initially positioned in a way that needs to be rotated by 90◦ to fit inside the

desired area which is 3cm wider than the box in each direction. The robot starts from an initial

gripper position, moves the gripper close to the box and pushes the box at specific points at its

sides to rotate and move it. If necessary, the gripper needs to circle around the box to find the next

contact point.

Collected dataset

Using the virtual environment described above, we collected a series of demonstrations for both

manipulation tasks. The demonstrations were collected from a single user, in the course of multiple
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sessions. In each session, the user performed a series of demonstrations for each task. The quality

of demonstrations varied: in some of them, the user could finish the task only after several tries.

For instance, sometimes the grasp was unsuccessful, or the user dropped the object in an incorrect

position and had to pick it up again. After finishing a demonstration, the user was immediately

presented with a new instance of the problem, with randomly generated initial conditions. All

the experiments had been recorded in the trajectory representation format presented above, at a

recording frequency of 33Hz. However, we have found that the neural network controller can be

trained more efficiently if the trajectories are sampled at a lower rate. We found a sampling rate of

4Hz to give the best results.

Although recording in the virtual environment allowed as to record significantly more demonstra-

tions than it would have been possible with a physical robot, we have found that we needed ways

to improve the number of training trajectories. We have done this by exploiting both the properties

of the individual tasks and the capabilities of our trajectory recording technique.

First, we noticed that in the pick and place task the user can put the object to any location on

the shelf. Thus we were able to generate new synthetic training data by shifting the existing

demonstration trajectories parallel to the width of the shelf. As the pushing to desired pose task

requires a specific coordinate and pose to succeed, this approach is not possible for the second task.

The second observation was that by recording the demonstration at 33Hz but presenting the training

trajectories at only 4Hz, we have extra trajectory points. These trajectory points can be used to

generate multiple independent trajectories at a lower resolution. The process of the trajectory

generation by frequency reduction is shown in Figure 4.2.

Table 4.1 describes the size of the final dataset. As the table shows, the average number of way-

points in a trajectory for the pick and place task was 20.68, while the same number was 28.61 for

the push to desired pose task. This data, based on the human input, shows that the second task was
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more difficult than the first for the human operator.

⚫ ▲ ⬛ ◉ ⬟ � ▢ ◇ ⚫ ▲ ⬛ ◉ ⬟ � ▢ ◇ ⚫ ...

Original trajectory
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ... ▲

▢ ▢ ▢ ▢ ▢ ▢ ▢ ... ▢

◇ ◇ ◇ ◇ ◇ ◇ ◇ ... ◇

.

.

.
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Waypoints

Figure 4.2: Creating multiple trajectories from a demonstration recorded at a higher frequency.

Table 4.1: The size of the datasets for the two studied tasks

Task Pick and place Push to pose
Raw demonstrations 650 1614
No. of demonstrations after shift 3900 -
No. of demonstrations after frequency reduction 31,200 12,912
Total no. of waypoints 645,198 369,477
Average demonstration length (waypoints) 20.68 28.61

The neural network based robot controller

The next step of our workflow is to design and train a neural network based robot controller that is

able to generate robot trajectories. This controller takes as input the pose of the objects involved
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and the pose and open/close status of the gripper at time t. The output of the controller is a

prediction of the pose and the open/closed status of the gripper at time t+ 1. During training, this

prediction is used to generate the error signal. During the deployment of the trained network, the

prediction represents the desired pose of the end actuator which the robot needs to achieve through

its inverse kinematics calculations.

In this series of experiments, we have used a separate controller for the pick and place and the push

to desired pose tasks. These controllers have a similar network architecture but had been trained

on the specific tasks. In the next chapter, we show that it is also possible to use a single neural

network to learn all the manipulation tasks.

Let us discuss the choice of the architecture of the neural network. In particular, there are two

important decision points: the nature of the network layers and the cost function used to train the

network.

Our choice for this architecture is to use an LSTM recurrent neural network and rely on mixture

density networks (MDNs) to predict the probability density of the output. The error signal, in this

case, is based on the negative logarithm likelihood of the next target waypoint given the probability

density implied by the MDN.

In order to determine whether our proposed approach represents a progress over the current state

of the art, we need to compare it with current state of the art solutions. For instance, we can

compare our solution with the more popular choice of using the mean squared error (MSE) as an

error signal. Another term of comparison can be obtained by comparing our approach to other

researchers solving similar tasks. For instance, [43] uses convolutional layers (for extracting poses

from images) followed by feedforward layers to give a single prediction about the next waypoint

in the trajectory. In this work we do not deal with robot vision, thus as the basis of comparison,

we have also created an implementation that matches the structure of the network from [43] which
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follow the convolutional layers.

Thus we have implemented four choices for the controller structure: LSTM with MDN, LSTM

with MSE, feedforward network with MDN and feedforward network with MSE. Due to limited

space, we will only describe the LSTM with MDN controller. For the other controllers, all the

comparable choices had been similar.

The LSTM-MDN robot controller

Let us first justify the intuition behind the use of LSTM and MDN technologies in the implemen-

tation of our robot controller.

One of the first insights is that the solution to both manipulation tasks contain a series of individual

movements which need to be executed in a specific sequence. Although both tasks can be solved in

several different ways, the individual movements in them cannot be randomly exchanged. In order

to successfully solve the task, the robot needs to choose and commit to a certain solution. While it

is technically possible that this commitment will be encoded in the environment outside the robot,

we conjecture that a robot controller that has a memory that can store these commitments will

perform better. The requirement of a controller with a memory leads us to the choice of recurrent

neural networks, in particular, one of the most widely used model, the LSTM [26].

LSTM can encode the useful information of the past in a single or multiple layers. Each layer

accepts as input the output of the previous layer concatenated with the network input xt = {et, qt}.

Each LSTM layer predicts its output based on its current input and its internal state. In addition, the

LSTM updates its internal state at each time-step to be used in the next prediction. The concatena-

tion of outputs of all layers will be used to predict the output of the network yt. In our controller

we are using three LSTM layers with 50 nodes each as shown in Figure 4.3.
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Figure 4.3: The training and evaluation phase. During the training the LSTM network is unrolled
for 50 time-steps. The gripper pose and status (open/close) et and the pose of relevant objects qt at
time-step t is used as input and output of the network to calculate and backpropagate the error to
update the weights. During the evaluation phase, the mixture density parameters are used to form
a mixture of Gaussians and draw a sample from it. The sample is used to control the robot arm.

The second intuition applies to the choice of the output layer and error signal used for the training

of the neural network. For both tasks we are considering there can be multiple solutions. For

instance, for the push to pose task, the robot might need to push the box in a direction parallel

with its diagonal. This can be achieved by either (a) first pushing the shorter side of the box

followed by a push on the longer side or (b) the other way around. However, by averaging these

two solutions we reach a solution where the grasper would try to push the corner of the box,

leading to an unpredictable result. This leads us to the conjecture that a multi-modal error function

would perform better than the unimodal MSE. The approach we chose is based on Mixture Density

Networks (MDN) [8] which use the output of the network to predict the parameters of a mixture

distribution. Once we have the parameters of the mixture distribution, we can draw a sample and

use it as the output of the network (which, in our case is the next pose of the gripper). Unlike the

model with MSE cost which is deterministic, this approach can model stochastic behaviors to be

executed by the robot. The probability density of the next waypoint can be modeled using a linear
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combination of Gaussian kernel functions

p(y|x) =
m∑
i=1

αi(x)gi(y|x) (4.1)

where αi(x) is the mixing coefficient, gi(y|x) is a multivariate Gaussian, and m is the number of

kernels. Note that both the mixing coefficients and the Gaussian kernels are conditioned on the

complete history of the inputs till current timestep x = {x1 . . . xt}. This is because the concate-

nation of the output of all layers which is used to estimate the mixing coefficients and Gaussian

kernels is itself a function of x. The Gaussian kernel is of the form

g(y|x) =
1

(2π)c/2σi(x)
exp

{
−‖y − µi(x)‖2

2σi(x)2

}
(4.2)

where the vector µi(x) is the center of ith kernel. We do not calculate the full covariance matrices

for each component, since this form of Gaussian mixture model is general enough to approximate

any density function [47].

The parameters of the Gaussian kernels µi(x), σi(x) and mixing coefficients αi(x) are represented

by the layer M in Figure 4.3. To accomplish this, layer M needs to have one neuron for each param-

eter. Thus layer M will have a width (c+ 2)×m, containing c×m neurons for µi(x), m neurons

for σi(x), and another m neurons for αi(x). This layer is fully connected to the concatenation of

layers H1, H2 and H3.

To satisfy the constraint
∑m

i=1 αi(x) = 1, the corresponding neurons are passed through a softmax

function. The neurons corresponding to the variances σi(x) are passed through an exponential

function and the neurons corresponding to the means µi(x) are used without any further changes.
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Finally, we can define the error in terms of negative logarithm likelihood

EMDN = −ln

{
m∑
i=1

αi(x)gi(y|x)

}
(4.3)

Training the controller. The network model is implemented in Blocks [72] framework that is

built on top of Theano [70]. The network is unrolled for 50 time steps. All the parameters are

initialized uniformly between -0.08 to 0.08 following the recommendation by [66]. Stochastic

gradient descent with mini-batches of size 10 is used to train the network. RMSProp [71] with

initial learning rate of 0.001 and decay of 0.99-0.999 (based on number of examples) is used to

divide the gradients by a running average of their recent magnitude. In order to overcome the

exploding gradients problem, the gradients are clipped in the range [-1, 1]. We use 80% of the data

for training and keep the remaining 20% for validation. We stop the training when the validation

error does not change for 20 epochs.

Using reinforcement learning to adapt the policy according to user preferences

As we discussed before, even demonstrations collected from a single user might have examples

where the same task is demonstrated in several different styles. If the demonstrations had been

collected from multiple users, they will naturally have a mix of various styles of executing tasks.

Most of these ways or styles are equivalent from the point of view of performance. A robot trained

using LfD will choose randomly at execution time the style of execution to follow.

However, sometimes we need the robot to behave according to a particular style of performing a

task so that it matches the preferences of the user. A possible approach is to use reinforcement

learning. To accomplish this goal, we use the policy gradient algorithm [67] to push the policy

towards our desired style. Let us assume that users can specify some reward rt at each time-step of

32



www.manaraa.com

trajectory τ that shows how it fits their preferences. For a parameterized policy πθ (in our method,

parameters are the weights of a neural network), the expected return can be defined as

J(θ) = E
[∑
t≥1

γtrt|πθ
]

(4.4)

where γ is the discount factor. We want to maximize the expected return. According to the REIN-

FORCE algorithm [74], we can estimate the gradient using the formula

∇θJ(θ) ≈
∑
t≥1

r(τ)∇θ log πθ (4.5)

where r(τ) is the expected reward for the trajectory τ . However, we can reduce the variance of the

gradient by considering only the future reward and discount the distant rewards

∇θJ(θ) ≈
∑
t≥1

(∑
t′≥t

γt
′−t rt′

)
∇θ log πθ (4.6)

This means that if a trajectory is based on the preferences of the user (returns high reward quicker),

increase the probability of its actions being selected by the policy. Training the neural network

using this approach is very similar to the supervised method we explained in the previous part. We

use the data gathered from the user and multiply the cost of each waypoint in the trajectory by its

expected future reward.

Transferring the controller to the real robot

The last step of the process is to transfer the trained controller to a real robot. We have used a

Rethink Robotics Baxter robot for this purpose. Transferring the controller to the physical robot

opened several new challenges. As the controller provides only the next pose of the end-effector,
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the controller had been augmented with inverse kinematics calculations to calculate the trajectory

in the Baxter robot arms’ joint space.

Another challenge is that while in the virtual world we had perfect knowledge of the pose of the

end-effector and all the objects in the environment, we needed to acquire this information through

sensing. In this chapter we do not deal with computer vision: our controller architecture only

performs robot arm control. To supplant the missing vision component, we relied on a Microsoft

Kinect sensor and objects annotated with markers to track the pose of the objects. One of the

problems with this approach is that the robot arm might occlude the view of the sensor. The Kinect

sensor was placed close to the table to reduce the chance of occlusion, however, occlusions may

still occur if the robot’s arm is placed between the object and the Kinect.

Another challenge is the fact that the waypoints generated by the controller are relatively far away,

leading to a jerky motion. While generating the trajectory at each time-step, we use interpolation

in joint space to fill in the gap between the current waypoint and previous one and make the robot’s

movement smooth and slow.

Finally, we found that the trajectory described by the controller can not always be executed by the

Baxter arm at the same timestep as in the virtual environment. Sometimes it takes longer (a few

seconds) for the Baxter to reach the desired next end-effector pose and sometimes it is quite fast

(a few milliseconds). Therefore, we use a dynamic execution rate to wait between execution of

each waypoint. Concretely, the algorithm waits for .2sec and checks if the difference between the

current pose of the gripper and the predicted one is below a certain threshold. If yes, it commands

the robot to go to the next waypoint, otherwise it waits in a loop until the end-effector reaches the

desired pose or timeout occurs which means that the end-effector cannot reach that pose (either

because inverse kinematic fails or a collision occurs).
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Experimental validation

In the following we describe the results of a series of experiments performed in the virtual and

physical environment. Our goals with the experimentation were to verify two hypotheses:

• Hypothesis 1: We conjecture that for the manipulation tasks we consider, the choices of

LSTM for the neural network architecture and MDN for the error signal confer advantages

over feedforward networks and MSE respectively.

• Hypothesis 2: We conjecture that the proposed architecture combined with policy gradient

techniques can learn manipulation policies that perform the task according to preferences of

the user.

• Hypothesis 3: We conjecture that the proposed architecture allows us to transfer a controller

learned in a virtual environment to the control of a physical robot executing a real-world

version of the same task.

Validating hypothesis 1: Comparing network architectures in the virtual world

In order to validate hypothesis 1, in addition to our proposed architecture involving LSTM and

MDN we have implemented and trained all the other combinations of the proposed approaches.

Thus we trained four different neural network based robot controllers of the following architectures

and parametrization:

• FeedForward-MSE: 3 layers of fully connected feedforward network with 100 neurons in

each layer and mean squared error as the cost function.
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Figure 4.4: A sequence of images showing the autonomous execution of pick and place in simula-
tion (first row), pick and place in real world (second row), pushing in simulation (third row), and
pushing in real world (fourth row). The robot is controlled by a mixture density network with 3
layers of LSTM.

• LSTM-MSE: 3 layers of LSTM with 50 memory states in each layer and mean squared error

as the cost function.

• FeedForward-MDN: Mixture density network containing 3 fully connected feedforward lay-

ers with 100 neurons in each layer. The mixture contains 20 Gaussian kernels.

• LSTM-MDN: Mixture density network containing 3 layers of LSTM with 50 memory states

in each layer. The mixture contains 20 Gaussian kernels.
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Figure 4.5: Baseline network architectures compared to the LSTM-MDN approach.

The LSTM-MDN network was illustrated in Figure 4.3. The training phase of other baseline

approaches are shown in Figure 4.5.

Each network had been separately trained for the pick and place and the push to desired pose

respectively, in effect creating 8 different controllers. The resulting controllers had been tested in

the virtual environment as follows. The virtual robot had to perform randomly generated tasks 20

times. If it can not complete the task in a limited time (1 minute for the first task and 2 minutes for

the second one), we count the try as a failure and reset the position of the box. The performance of

the evaluated networks are shown in Table 4.2.

Feedforward-MSE. The feedforward-MSE network with a Markov assumption was not able to
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Table 4.2: Performance comparison of different approaches in a virtual environment.

Controller Pick and place Push to pose
Feedfoward-MSE 0% 0%
LSTM-MSE 85% 0%
Feedforward-MDN 95% 15%
LSTM-MDN 100% 95%

complete the tasks even once. In the pick and place task, it learns to follow the box and sometimes

close the gripper, however, it stops there and does not continue towards the shelf. The reason might

be that the user usually pauses after closing the gripper to see if the grasp is successful or not.

Since the gripper does not move for a few waypoints and then continues to move, the memoryless

network fails to determine when the gripper should stop and when it should continue towards the

shelf. What this model learns is basically the average of next waypoints without considering the

past trajectory.

LSTM-MSE. This network learns a deterministic policy to predict the next waypoint based on the

past trajectory by taking the average of next waypoints in the example demonstrations. Therefore,

in the pick and place task that there is usually only one solution to the problem, it works relatively

fine. However, in the pushing task that usually there are multiple solutions that the user has chosen

to perform arbitrarily, the model takes their average which might not be a valid solution.

Feedforward-MDN. This method finds a probability distribution of the next waypoint without con-

sidering the past. Therefore, the trajectory does not look smooth as in the case of using LSTM

especially when there are different solutions as in the case of pushing task. However, it tries and

fails multiple times until it sometimes successfully performs the task.

LSTM-MDN. This method learns to successfully perform the tasks in most of the cases since it does
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not have the limitations of the other methods, i.e. it predicts the complete probability distribution

of the next waypoint considering the past. One interesting observation was that it learns to recover

from failure; for instance, when the grasp fails in the pick and place task, the gripper does not

continue towards the shelf without the box, instead it tries the grasp one more time. Similarly, in

the pushing task, when the force to the box was not enough to put it into the desired location, it

tries again. These behaviors are learned by the network based on the performance of the user in

similar situations.

Validating hypothesis 2: Using policy gradient to capture user preferences

Let us consider the pick and place task, which requires the robot arm to pick up a box from the

table and put it on the shelf. The shelf is the same width as the table, and the task does not require

any specific position of where to put the box. In some demonstrations, the users put the box at

the same x coordinate on the shelf where it was on the table. In other demonstrations, the box

was moved more towards the center of the shelf. All these demonstrations were a correct way to

execute the task. We found that the trained controller choose to put the box at the shelf at a more

or less random position.

Let us now consider that a user expresses a preference towards putting the box towards the middle

of the shelf. In reinforcement learning terms, by assigning for the final action of the task a reward

equal with the negative distance d from the center of the shelf on the x coordinate. Then we train

the network using policy gradient-based reinforcement learning on the same data we gathered for

supervised LfD approach. In the following table, we compare the average distance from the center

for the original and RL-refined version over 100 random cases.
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Controller Distance from center on x axis

LfD only 9.1cm

LfD refined with policy gradient RL 6.07cm

Let us now discuss the results and the limitations of this approach. Clearly, the approach was

successful on introducing a new criteria based on which the robot controller chooses its behavior.

Although the error is still high, we expect that using more demonstrations will make the robot

more accurate as reinforcement learning in general needs more examples to work well compared

to supervised learning.

We have also experimented with a number of different preferences a user might express both for the

pick and place and the push to pose task. For instance, another reasonable example of a preference

would be to avoid certain positions on the table (this would have applications when transferring to

a new environment). We did not succeed in converging to a policy that both executes the original

task and satisfies these preferences. One reason for this might be that the original demonstrations

did not contain any behavior that might serve as the basis of trajectories which might be needed

in this case. Our experiments match the current consensus of the deep reinforcement learning

community that the RL training for specific criteria is more an art than a science with predictable

results. Further investigating this problem is a future work for our group.

Validating hypothesis 3: Comparing performance in the virtual and physical world

Once we have established that the LSTM-MDN approach yields the best performance on both

tasks, we proceeded to verify that the LSTM-MDN controller trained on virtual demonstrations

can actually perform on the physical robot. To verify this we subjected both the virtual and the

physical robots to the same tasks. The sequence of images in the Figure 4.4 shows the controller
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acting autonomously for the pick and place and pushing to pose tasks in the virtual and physical

environments respectively. A video of the same experiments is available online1.

We have found that indeed, in most cases, the physical robot had been successful on executing

both tasks. This is not because the virtual and physical worlds are highly similar. The size of the

gripper of the Baxter robot is different from the one in the virtual world. The friction coefficients

are very different, and the physics simulation in the virtual world is also of limited accuracy. Even

the size and shape of the box used in the physical experiments is not an exact match of the ones

in the simulation, and the physical setup suffered from camera calibration problems. Overall, the

number of things that can go wrong, is much higher in the physical world.

What we found remarkable is that, in fact, during the experiments many things went wrong or

changed from the training data - however, the robot was often able to recover from them. This

shows how the model is robust in handling deviation from what it has seen. The network contains

different solutions for a case that can apply if others fail. For instance, in the pushing task, to rotate

the box, it tries to touch the corner of the box and push it. If the box did not move since the gripper

passed it without a touch, it tries again but this time from a point closer to the center of the box.

This gives the network some tolerance to slight variations in the size of the box from the simulation

to the real world.

After verifying that the successful completion of the task in the physical world is possible, we ran

the same series of 20 experiments in the physical world as well. The success rates in the virtual

and physical worlds are compared in Table 4.3.

As expected, the success rate was lower in the physical world for both tasks. Some of the reasons

behind the lower success rate is obvious: for instance, in the physical world there is an inevitable

1https://youtu.be/9vYlIG2ozaM
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Table 4.3: Performance comparison of LSTM-MDN network in the virtual and physical worlds.

Environment Pick and place Push to pose
Virtual world 100% 95%
Physical world 80% 60%

noise in the position of the objects and the end effector. Some of the noise is a consequence of

limited sensor accuracy (such as the calibration of the Kinect sensor) and effector performance.

Some of the noise is due to the way in which we acquired the positional information through a

Kinect sensor: if during the manipulation the robot arm occluded the view of the object to the

Kinect sensor, we temporarily lost the ability to track the object.

Another reason for the lower performance in the physical world is due to the differences in the size,

shape, physical attributes such as friction, etc. of the gripper and objects between the simulation

and real world. For instance, for the push to pose task, the friction between the object and the table

determines the way the object moves when pushed. This creates a bigger difference between the

virtual and the physical environment compared to the pick and place task, where after a successful

grasp the robot is essentially in control of the environment. Thus, the push to pose task shows a

stronger decrease in success rate when moving to the physical world.

42



www.manaraa.com

CHAPTER 5: LEARNING MULTIPLE TASKS

In this chapter we discuss a multi-task learning from demonstration mechanism that works using

raw images as input. In this approach, a single recurrent neural network can generate robot arm

trajectories to perform different manipulation tasks. The task is decided by inputting a task selector

one-hot vector to the network. An overview of our approach is illustrated in Figure 5.1.

Demonstrating multiple tasks
Recording: 
 - Sequence of images
 - Robot joint commands

Controlling
robot arm 
by PS Move Training

neural 
network

Convolutional 
neural network

Current 
image

LSTM

Joint 
command to 

the robot

Robot autonomously performs the 
selected task by continuously 
receiving images of the environment

Task 
selector

Change the 
environment

Figure 5.1: Overview of our approach to multi-task learning
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Method

Task demonstration and data collection

Different approaches can be considered to enable a human to control a robotic arm. For some

robotic arms such as Baxter’s there is a zero-gravity mode in which the user can grab the arm and

freely move it to demonstrate a task. However, in this approach the user will appear in the recorded

images of the scene and might confuse the trained model when he is not present during the evalu-

ation phase. Another approach to control the arm is to use mouse, keyboard, or Xbox controller.

However, we did not find these approaches intuitive and convenient for the user. Therefore, we

used a Playstation Move or a Leap Motion controller that provides fast tracking of the position and

the orientation of user’s hand. This information is used to find joint configurations of the robot arm

so that its end-effector follows user’s hand. This approach can generate natural arm movements

for accomplishing a task.

We ask the user to demonstrate some related manipulation tasks with a two finger robotic arm. Dur-

ing the demonstration we record the commands sent to the robot as well as 128×128 RGB images

of the scene at a frequency of 33Hz. Then we down-sample the trajectories to reach a frequency

of 4Hz. This way we create redundant trajectories with different starting point offsets [55]. For in-

stance, if we have a high frequency trajectory {t1, t2, . . .}, after down-sampling it by a factor of 8,

we will have 8 trajectories {t1, t9, t17, . . .}, {t2, t10, t18, . . .}, etc. We found this data augmentation

technique to be useful in regularizing the network.
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Figure 5.2: Our proposed architecture for multi-task robot manipulation learning. The neural
network consists of a controller network that outputs joint commands based on a multi-modal
autoregressive estimator and a VAE-GAN autoencoder that reconstructs the input image. The
encoder is shared between the VAE-GAN autoencoder and the controller network and extracts
some shared features that will be used for two tasks (reconstruction and controlling the robot).

Neural Network Architecture

Our network architecture is illustrated in Figure 5.2. Convolutional layers augmented with batch

normalization [27] process the input images and map them to a low dimensional feature represen-

tation according to the VAE-GAN approach [41]. VAE-GAN tries to encode input images based

on the idea of Variational Autoencoders [35] and reconstruct realistic images based on the idea

of Generative Adverserial Networks [23]. In VAE-GAN approach, a discriminator is added to the

generator to discriminate the reconstructed images with the real images. However, instead of di-

rectly comparing the image pixels that causes uncertainty to appear in the form of blurriness, the

extracted features of the real and reconstructed images after the third convolutional layer of the
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discriminator are compared together. On the bottom half of the Figure 5.2, we have a controller

network where the extracted visual features are combined with a task selector one-hot vector and

fed into 3 layers of layer normalized [6] LSTM [26] to generate joint commands to control the

robot.

Human demonstrations can be very inconsistent, even for the same task, so a unimodal predictor,

such as a Gaussian distribution, will average out dissimilar motions. By using a multi-modal

predictor, we can capture all of the modes in the demonstrations without excessive averaging.

However, simple multi-modal distributions such as mixtures of Gaussians [8] provide a number

of modes that scales linearly with the number of parameters. Therefore, by using a multi-modal

autoregressive estimator similar to Neural Autoregressive Distribution Estimator (NADE) [40], we

increase the number of modes that the model can represent exponentially with the number of steps

of the autoregressive model. While autoregressive estimators usually discretize the output, we use

mixture of Gaussians to predict the entire probability distribution of the output, providing a rich

and expressive class of distributions.

A closer look at the architecture shows that we have a VAE-GAN autoencoder that shares its en-

coder with the visual feature extractor of a controller network that sends commands to the robot.

The encoder tries to fully reconstruct the images while the controller network will try to focus on

some relevant features from the image such as the pose of the gripper and relevant objects. This

competition/collaboration between these two networks will result in a more regularized visual fea-

ture extractor. This idea is similar to the semi-supervised learning with generative models [36]

where they use a generative model via the VAE decoder and discriminative training via the action

branch to improve sample efficiency. However, in contrast to this work, we observe an improve-

ment in generalization simply from including the reconstruction objective, without including any

additional unlabeled data.
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Note that the extracted features from the encoder are in the form of a probability distribution that is

encouraged to be close to the unit Gaussian by a KL-divergance penalty in the loss function. The

noise in the LSTM input caused by sampling from the encoded latent features helps to regularize

the LSTM. In addition, we use dropout [64] with a probability of 0.5 to further avoid overfitting.

Training the Network

The error signal that is used to train the network using back-propagation is based on the idea of

Mixture Density Networks (MDN) [8]. In this approach, the output of the LSTM network is used

to predict the parameters of a multi-modal mixture distribution. However, we do not predict all the

outputs (joint configurations) at the same time-step of LSTM. Instead, we factor the J-dimensional

distribution of joint configurations y(x) into a product of one-dimensional distributions, in this

order: base, shoulder, elbow, ..., and gripper. The probability distribution in this approach is

modeled using a linear combination of Gaussian kernel functions of the form

p(y|x) =
m∑
i=1

αi(x)gi(y|x) (5.1)

in which αi(x) is the mixing coefficient, gi(y|x) is a multivariate Gaussian, and m is the number

of kernels. At each time-step, the output is y = yjt , the current joint to be predicted and input

is x = {x11 . . . x
<j
t }, the encoded history of observations and predictions of the network before

predicting the current joint. The Gaussian kernel is of the form

g(y|x) =
1

(2π)c/2σi(x)
exp

{
−‖y − µi(x)‖2

2σi(x)2

}
(5.2)

where the vector µi(x) is the center of ith kernel. We do not calculate the full covariance matrices

for each component, since this form of Gaussian mixture model is general enough to approximate
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any density function [47].

In the network architecture, we use skip connections from the input to all LSTM layers [25]. Then

the output of all LSTM layers are concatenated together and then fully connected to another layer

with width 3 ×m. This layer contains m neurons for µi(x), m neurons for σi(x), and another m

neurons for αi(x). To satisfy the constraint
∑m

i=1 αi(x) = 1, the corresponding neurons are passed

through a softmax function. The neurons corresponding to the variances σi(x) are passed through

an exponential function and the neurons corresponding to the means µi(x) are used without any

further changes. Finally, we can define the error in terms of negative logarithm likelihood

E = −ln

{
m∑
i=1

αi(x)gi(y|x)

}
(5.3)

Except the latent space size that is set to 256, other parameters of the autoencoder are set and

initialized according to the original paper [41]. All other parameters including LSTM parameters

are initialized uniformly between -0.08 to 0.08 following the recommendation by [66]. Each LSTM

layer has 100 memory cells and is connected to a mixture of Gaussians with 50 components. We

first unroll and train the network using sequences of 5 time-steps and batch size of 100 examples.

Then we fine-tune the LSTM layers using sequences of 50 time-steps and mini-batches of size

128. In the fist phase of training, Adam optimizer [37] is used while for fine tuning LSTM layers,

RMSProp [71] with initial learning rate of 0.005 and decay of 0.999. In order to overcome the

exploding gradients problem, the gradients are clipped in the range [-1, 1]. During the fine-tuning,

the learning rate is decreased by a factor of 2 in every 100 epochs.

48



www.manaraa.com

Executing the Policy at Test Time

During the test time, the trained neural network controller generates robot joint commands in a

loop by observing the environment. The LSTM predicts each joint one by one and when the

predictions of all the joints are available, the robot takes an action, and another image is recorded

and fed into the controller. As we mentioned before, the user occasionally makes mistakes while

demonstrating the task. However, it is desired that the robot does not repeat those mistakes. We

can reduce the rate of mistakes by introducing some bias towards higher probability areas of the

distribution while sampling from the probability distribution [25]. While sampling, we use the new

mixing coefficient

αi(x) =
exp(αi(x)(1 + b))

exp(
∑m

i=1 αi(x)(1 + b))
(5.4)

and standard deviation

σi(x) = exp(σi(x)(1 + b)) (5.5)

where bias parameter b is a real number between 0 to 10. When b = 0, there is no bias while

b = 10 introduces the maximum bias where only a point with maximum probability is chosen. We

found b = 1 to work well in our experiments.

Why this Architecture?

Why predicting the entire probability distribution? In many of the robotics tasks, there exist more

than one solution to a problem. Interestingly, humans tend to perform the tasks in different ways.

Even one user might take different approaches to solve a problem in each attempt. Therefore our

model should be capable of dealing with datasets containing more than one possible output given

the same input. One approach would be to predict a deterministic joint command and use mean

squared error to minimize the error between the predicted command and the command demon-
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strated by the user. In this approach, if there are multiple solutions demonstrated by the user, the

network will learn to predict the average of these commands. However, this behaviour might result

in completely wrong behaviours. For instance, assume that the end-effector is supposed to rotate

around an object without colliding with it to reach the other side of it. The user sometimes chose

to rotate clockwise and sometimes counterclockwise. If our model learns an average of these two

trajectories, the end-effector will go straight towards the object and collide with it instead of rotat-

ing around it either way. A solution to this problem is to predict the entire probability distribution

of the next action and choose a sample from that distribution.

Why use recurrent neural networks? Another consideration while designing the network is that

whether the input provides all the necessary information for choosing a motor command. In simple

tasks this might be the case, however, some tasks need history of the previous waypoints in the

trajectory in order to predict the next command. For instance, assume that the task is to pick up a

pen from a pen holder and put it on the desk if the pen is currently inside the pen holder, otherwise

pick up the pen from the desk and put it inside the pen holder. Consider an image in which the

pen is gripped and is in the middle of the way between the desk and the pen holder. Is this image

enough for telling the network whether to continue towards the pen holder or the desk? No. The

network needs to know where the pen has been before in order to decide the next action. Another

example can be when the human demonstrator needs to stop for a couple of time-steps to make

sure the gripper is in the right place before grasping an object. The model needs to remember the

number of time-steps that it has been waiting before continuing to move. This is the reason we use

LSTM recurrent neural network that can store relevant information to be used later.

Why autoregressive density estimator? By using this density estimator, we condition the prediction

of each joint on the prediction of previous joints. To have an understanding of why this is important,

imagine a situation in which an object is about to be grasped. The network needs to predict whether

the gripper should be closed or not in the next time-step. If we do not condition the prediction of
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gripper on the prediction of other joints in the current time-step, the gripper might be closed before

the end-effector is in a good grasping angle. Therefore, the grasp will fail. This idea of modeling

the joint probability distribution of outputs by casting it as a product of conditional distributions

is used in Pixel RNNs [50], Neural Autoregressive Distribution Estimator (NADE) [40], and fully

visible neural networks [49, 7].

Experimental validation

Manipulation Tasks

In all of the following tasks the objects are placed in a random position and orientation within the

reachability range of the robot arm. One of the challenges is that all the objects might get partially

or completely occluded by the robot arm. In addition, because of the difficulty of the tasks and

also the teleoperation method, the user often makes mistakes and tries again.

Task 1. In this task, the robot picks up a small bubble wrap and puts it into a small plate. This

task is very challenging since the robot needs to be very accurate while picking up the thin and

deformable bubble wrap that often gets completely occluded by the arm during the grasp. If the

bubble wrap is placed inside the plate, we count it as a success.

Task 2. In this task, the robot needs to push a rounded plate to a certain area on the left side of its

workspace. This task is challenging because the robot needs to accurately detect the position of the

plate and push a point that moves the plate with the desired angle. In addition, if the plate ended

up moving to an unexpected direction, the arm needs to push from a completely different contact

point to fix the problem. If the plate is placed within an area with the radius of 3cm larger than the

radius of the plate, we count it a success.
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Task 3. In this task, the robot pushes a large box, which is too large to be grasped, and places it

close to its base with a certain position and orientation. This task is challenging because the robot

needs adjust the orientation of the box within a 20◦ error range and the position of the box within

an area that is 2cm wider than the box in each direction. So, if for instance the robot pushes the box

further to the right such that it exits the mentioned area, it needs to circle around the box without

colliding with it to push it from the other side.

Task 4. In this task, water pump pliers are placed on the desk in the open position. The robot needs

to close the pliers and orient them parallel to the table borders. In this task the convolutional layers

need to detect the thin handles of the pliers so that LSTM can decide where to push to accomplish

the task. The pliers needs to be completely closed while 20◦ of error is acceptable for its final

orientation. Note that in this task the initial orientation of the pliers is in a way that the handles are

closer than its head to the base of the robot arm.

Task 5. In this task, the robot needs to pick up a towel and rub a small screwdriver box to clean it.

Although cleaning is not really important here, the motion needs to be as demonstrated. Therefore,

if the robot successfully picks up the towel, rubs at least half of the screwdriver box, and places the

towel back on the table, we count it as a success.

We demonstrate each task for 3 hours, which is equivalent to 909, 495, 431, 428, 398 times com-

pletion of each task for tasks 1-5, respectively. We use 80% of this data for training and keep the

remaining 20% for validation.

Compared Methods

In this part we compare different different variations of the proposed method to see which one

works best. The compared approaches are as follows:
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Single-task. The network architecture is as explained in Figure 5.2. However, we train it on the

data of a single task. This means that the one-hot task selector vector will not be used. In addition,

all the joints are predicted at the same time, therefore, it is not an autoregressive estimator.

Multi-task. This method is the same as single-task method, however, we train it on the data of all

tasks and then we use the one-hot task selector vector to decide which task should be performed.

Multi-task autoregressive (no reconstruction). this approach utilized the autoregressive estimator

and is trained on the data of all tasks. However, we exclude the VAE/GAN that adds the recon-

struction to the error signal. This way we can see if the reconstruction part of the network really

helps.

Multi-task autoregressive. this is the main approach that contains autoregressive estimator and

reconstruction error, and also is trained on the data of all tasks.

Results

First we show how the autoencoder can reconstruct the input images in Figure 5.3. This shows that

all the objects and the arm itself are captured and encoded quite well in most cases. Therefore, the

LSTM has useful information to generate a trajectory to accomplish the task. Videos of example

demonstrations and also autonomous performance of different tasks by the robot can be watched

online1. Note that to get an accurate impression of the results, it is strongly recommended that the

reader watches the accompanying videos.

In order to quantitatively evaluate the performance of our method, we allow the robot to try each

task 25 times. If it cannot accomplish the task in a limited time (45 seconds for task 1, 60 seconds

1https://www.youtube.com/playlist?list=PL9FNn4TWSzQ418GWZsK1NWmNJRe_Q0ipg
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for tasks 2-4, and 75 seconds for task 5), we count the try as a failure place the objects in a

new random pose and repeat the experiment. Note that we do not stop the controller while we

are resetting the experiment since this has also been the case during the demonstrations. It is

interesting that the robot learned to go to the default state when it finishes the task since this was

the preference of the user while demonstrating. Table 5.1 shows the difference in performance of

compared methods.

Figure 5.3: Original input images to the network are shown on the top row. For each original
image, the corresponding reconstructed image by the autoencoder is shown in the bottom row.

Table 5.1: Performance comparison of different methods. The numbers are the percentile rate of
successfully accomplishing the tasks.

Method Task 1 Task 2 Task 3 Task 4 Task 5

Single-task 36% 16% 44% 16% 8%

Multi-task 16% 20% 52% 64% 20%

Multi-task autoregressive (no reconstruction) 12% 72% 56% 48% 16%

Multi-task autoregressive 76% 80% 88% 76% 88%

Now we describe and analyze the performance of each method:

Single-task. Training this network is difficult since it overfits very easily. Our attempts to avoid or

54



www.manaraa.com

delay overfitting by increasing the dropout ratio or making the network smaller did not improve the

results. The proposed model is very powerful and it does not have any assumption about the task

or the shape of objects that are involved in each task. This is good since we can train the model on

a wide variety of tasks. However, we need large number of demonstrations to successfully learn

a single task. The controller trained using this approach generates some movements that are often

similar to the demonstrations. However, they are not accurate enough to finish the task most of

the time. Sometimes abrupt movements send the objects to an unseen configuration or out of the

reachability range of the robot.

Multi-task. This model works much better than the previous model since there is more data that

leads to more stable training. The common patterns among different tasks can be well captured

since there is enough data from different tasks. For instance, consider a time when the gripper

is close to an object (bubble wrap or paper towel) and the model needs to decide if the gripper

should be closed or not in the next time-step. There is large variance in the data of one task due

to imperfect demonstrations and model. However, when grasping is an element of two different

tasks, the data for this pattern is doubled which leads to a better prediction.

Multi-task autoregressive (no reconstruction). The vision part of this model is not well trained

especially in the tasks where the objects are smaller or occluded more often. This is probably

because the training examples are not enough to train the visual feature extractor of the controller.

In the tasks where the objects are larger and vision is the easy part (e.g., task 3), the robot achieves

acceptable results.

Multi-task autoregressive. This model achieves the best results compared to the rest. Our observa-

tion was that this model generates very smooth trajectories that take a reasonable path in different

situations. Interestingly, this model has also learned to fix its own mistakes most of the time. Take

a look at Figure 5.4 for an example of mistake-fixing behaviour. To understand why this model
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works better consider the following example. When the gripper is close to an object that needs

to be grabbed, the event for closing the gripper might be triggered. In this model the uncertainty

is diminished since we delay the prediction of the gripper to the future when all other joints are

already known. Therefore, the model knows better if the gripper will have a good contact with the

object for a more stable grasp or not. Hence, the chances of a more successful grasp increases.

Figure 5.4: The robot makes mistakes but fixes them. Sequence of images from left to right shows
the performance of the robot. The task here is to close and orient the water pump pliers. When the
pliers are pushed more than expected, the robot turns around and pushes the other side to move the
pliers back to the desired orientation.
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CHAPTER 6: CONCLUSIONS

In this dissertation, we discussed methods to learn from user demonstrations with the goal of mak-

ing robots autonomous. First, we showed that if we consider only a subset of simple tasks that are

performed with respect to person’s head, we can learn using very few demonstrations. In the second

part, we addressed this problem: can we learn a task-agnostic controller from user demonstrations

if we have perfect knowledge about the environment? We proposed to use a neural network ar-

chitecture for this learning task. We evaluated this approach in simulation and also in real world

where the pose of each object is known. We also showed how to push the generated trajectory

towards desired user preferences using reinforcement learning. In the third part, we extended the

discussed architecture to a more general one where the input of the neural network is images of the

environment instead of object poses. We showed that this end-to-end training approach works well

on complex manipulation tasks. We also showed that a single network can learn multiple tasks at

the same time and it improves the success rate. This improvement is achieved because most of

the manipulation tasks have common building blocks such as grasping and pushing. In addition,

we showed that conditioning the prediction of each joint on the previously predicted joint is very

important and effective.

By providing sufficient demonstrations to the proposed architecture, we could learn complicated

tasks. One direction for the future work can be to find the limitations of this approach, i.e. which

tasks the robot does not learn. Another direction can be to gather demonstrations from multiple

users and learn to perform the task according to the preferences of each user. In this scenario, the

preferences of the user should be provided to the network in some way such as using a feature

vector.
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